Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1166641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868194

RESUMO

The possible applications for human retinal organoids (HROs) derived from human induced pluripotent stem cells (hiPSC) rely on the robustness and transferability of the methodology for their generation. Standardized strategies and parameters to effectively assess, compare, and optimize organoid protocols are starting to be established, but are not yet complete. To advance this, we explored the efficiency and reliability of a differentiation method, called CYST protocol, that facilitates retina generation by forming neuroepithelial cysts from hiPSC clusters. Here, we tested seven different hiPSC lines which reproducibly generated HROs. Histological and ultrastructural analyses indicate that HRO differentiation and maturation are regulated. The different hiPSC lines appeared to be a larger source of variance than experimental rounds. Although previous reports have shown that HROs in several other protocols contain a rather low number of cones, HROs from the CYST protocol are consistently richer in cones and with a comparable ratio of cones, rods, and Müller glia. To provide further insight into HRO cell composition, we studied single cell RNA sequencing data and applied CaSTLe, a transfer learning approach. Additionally, we devised a potential strategy to systematically evaluate different organoid protocols side-by-side through parallel differentiation from the same hiPSC batches: In an explorative study, the CYST protocol was compared to a conceptually different protocol based on the formation of cell aggregates from single hiPSCs. Comparing four hiPSC lines showed that both protocols reproduced key characteristics of retinal epithelial structure and cell composition, but the CYST protocol provided a higher HRO yield. So far, our data suggest that CYST-derived HROs remained stable up to at least day 200, while single hiPSC-derived HROs showed spontaneous pathologic changes by day 200. Overall, our data provide insights into the efficiency, reproducibility, and stability of the CYST protocol for generating HROs, which will be useful for further optimizing organoid systems, as well as for basic and translational research applications.

2.
Metabolites ; 13(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37512556

RESUMO

The thyroid hormones (THs) regulate various physiological mechanisms in mammals, such as cellular metabolism, cell structure, and membrane transport. The therapeutic drugs propylthiouracil (PTU) and phenytoin are known to induce hypothyroidism and decrease blood thyroid hormone levels. To analyze the impact of these two drugs on systemic metabolism, we focused on metabolic changes after treatment. Therefore, in a rat model, the metabolome of thyroid and liver tissue as well as from the blood plasma, after 2-week and 4-week administration of the drugs and after a following 2-week recovery phase, was investigated using targeted LC-MS/MS and GC-MS. Both drugs were tested at a low dose and a high dose. We observed decreases in THs plasma levels, and higher doses of the drugs were associated with a high decrease in TH levels. PTU administration had a more pronounced effect on TH levels than phenytoin. Both drugs had little or no influence on the metabolomes at low doses. Only PTU exhibited apparent metabolome alterations at high doses, especially concerning lipids. In plasma, acylcarnitines and triglycerides were detected at decreased levels than in the controls after 2- and 4-week exposure to the drug, while sphingomyelins and phosphatidylcholines were observed at increased levels. Interestingly, in the thyroid tissue, triglycerides were observed at increased concentrations in the 2-week exposure group to PTU, which was not observed in the 4-week exposure group and in the 4-week exposure group followed by the 2-week recovery group, suggesting an adaptation by the thyroid tissue. In the liver, no metabolites were found to have significantly changed. After the recovery phase, the thyroid, liver, and plasma metabolomic profiles showed little or no differences from the controls. In conclusion, although there were significant changes observed in several plasma metabolites in PTU/Phenytoin exposure groups, this study found that only PTU exposure led to adaptation-dependent changes in thyroid metabolites but did not affect hepatic metabolites.

3.
Nat Commun ; 13(1): 6183, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261438

RESUMO

Human organoids could facilitate research of complex and currently incurable neuropathologies, such as age-related macular degeneration (AMD) which causes blindness. Here, we establish a human retinal organoid system reproducing several parameters of the human retina, including some within the macula, to model a complex combination of photoreceptor and glial pathologies. We show that combined application of TNF and HBEGF, factors associated with neuropathologies, is sufficient to induce photoreceptor degeneration, glial pathologies, dyslamination, and scar formation: These develop simultaneously and progressively as one complex phenotype. Histologic, transcriptome, live-imaging, and mechanistic studies reveal a previously unknown pathomechanism: Photoreceptor neurodegeneration via cell extrusion. This could be relevant for aging, AMD, and some inherited diseases. Pharmacological inhibitors of the mechanosensor PIEZO1, MAPK, and actomyosin each avert pathogenesis; a PIEZO1 activator induces photoreceptor extrusion. Our model offers mechanistic insights, hypotheses for neuropathologies, and it could be used to develop therapies to prevent vision loss or to regenerate the retina in patients suffering from AMD and other diseases.


Assuntos
Degeneração Macular , Organoides , Humanos , Actomiosina , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Canais Iônicos , Degeneração Macular/patologia , Organoides/patologia , Células Fotorreceptoras , Retina/patologia , Fatores de Necrose Tumoral
4.
Bioinform Adv ; 2(1): vbac059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699419

RESUMO

Motivation: Protein-protein interactions (PPIs) play an essential role in a great variety of cellular processes and are therefore of significant interest for the design of new therapeutic compounds as well as the identification of side effects due to unexpected binding. Here, we present ProteinPrompt, a webserver that uses machine learning algorithms to calculate specific, currently unknown PPIs. Our tool is designed to quickly and reliably predict contact propensities based on an input sequence in order to scan large sequence libraries for potential binding partners, with the goal to accelerate and assure the quality of the laborious process of drug target identification. Results: We collected and thoroughly filtered a comprehensive database of known binders from several sources, which is available as download. ProteinPrompt provides two complementary search methods of similar accuracy for comparison and consensus building. The default method is a random forest (RF) algorithm that uses the auto-correlations of seven amino acid scales. Alternatively, a graph neural network (GNN) implementation can be selected. Additionally, a consensus prediction is available. For each query sequence, potential binding partners are identified from a protein sequence database. The proteom of several organisms are available and can be searched for binders. To evaluate the predictive power of the algorithms, we prepared a test dataset that was rigorously filtered for redundancy. No sequence pairs similar to the ones used for training were included in this dataset. With this challenging dataset, the RF method achieved an accuracy rate of 0.88 and an area under the curve of 0.95. The GNN achieved an accuracy rate of 0.86 using the same dataset. Since the underlying learning approaches are unrelated, comparing the results of RF and GNNs reduces the likelihood of errors. The consensus reached an accuracy of 0.89. Availability and implementation: ProteinPrompt is available online at: http://proteinformatics.org/ProteinPrompt, where training and test data used to optimize the methods are also available. The server makes it possible to scan the human proteome for potential binding partners of an input sequence within minutes. For local offline usage, we furthermore created a ProteinPrompt Docker image which allows for batch submission: https://gitlab.hzdr.de/proteinprompt/ProteinPrompt. In conclusion, we offer a fast, accurate, easy-to-use online service for predicting binding partners from an input sequence.

5.
Microbiome ; 9(1): 55, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622394

RESUMO

BACKGROUND: The intestinal microbiota plays a crucial role in protecting the host from pathogenic microbes, modulating immunity and regulating metabolic processes. We studied the simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species with a particular focus on the discovery of novel small proteins with less than 100 amino acids (= sProteins), some of which may contribute to shape the simplified human intestinal microbiota. Although sProteins carry out a wide range of important functions, they are still often missed in genome annotations, and little is known about their structure and function in individual microbes and especially in microbial communities. RESULTS: We created a multi-species integrated proteogenomics search database (iPtgxDB) to enable a comprehensive identification of novel sProteins. Six of the eight SIHUMIx species, for which no complete genomes were available, were sequenced and de novo assembled. Several proteomics approaches including two earlier optimized sProtein enrichment strategies were applied to specifically increase the chances for novel sProtein discovery. The search of tandem mass spectrometry (MS/MS) data against the multi-species iPtgxDB enabled the identification of 31 novel sProteins, of which the expression of 30 was supported by metatranscriptomics data. Using synthetic peptides, we were able to validate the expression of 25 novel sProteins. The comparison of sProtein expression in each single strain versus a multi-species community cultivation showed that six of these sProteins were only identified in the SIHUMIx community indicating a potentially important role of sProteins in the organization of microbial communities. Two of these novel sProteins have a potential antimicrobial function. Metabolic modelling revealed that a third sProtein is located in a genomic region encoding several enzymes relevant for the community metabolism within SIHUMIx. CONCLUSIONS: We outline an integrated experimental and bioinformatics workflow for the discovery of novel sProteins in a simplified intestinal model system that can be generically applied to other microbial communities. The further analysis of novel sProteins uniquely expressed in the SIHUMIx multi-species community is expected to enable new insights into the role of sProteins on the functionality of bacterial communities such as those of the human intestinal tract. Video abstract.


Assuntos
Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Comunicação Celular , Microbioma Gastrointestinal , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Microbioma Gastrointestinal/genética , Humanos , Intestinos/química , Intestinos/microbiologia , Metagenoma/genética , Espectrometria de Massas em Tandem
6.
BMC Bioinformatics ; 21(1): 561, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287694

RESUMO

BACKGROUND: Gaining biological insights into molecular responses to treatments or diseases from omics data can be accomplished by gene set or pathway enrichment methods. A plethora of different tools and algorithms have been developed so far. Among those, the gene set enrichment analysis (GSEA) proved to control both type I and II errors well. In recent years the call for a combined analysis of multiple omics layers became prominent, giving rise to a few multi-omics enrichment tools. Each of these has its own drawbacks and restrictions regarding its universal application. RESULTS: Here, we present the multiGSEA package aiding to calculate a combined GSEA-based pathway enrichment on multiple omics layers. The package queries 8 different pathway databases and relies on the robust GSEA algorithm for a single-omics enrichment analysis. In a final step, those scores will be combined to create a robust composite multi-omics pathway enrichment measure. multiGSEA supports 11 different organisms and includes a comprehensive mapping of transcripts, proteins, and metabolite IDs. CONCLUSIONS: With multiGSEA we introduce a highly versatile tool for multi-omics pathway integration that minimizes previous restrictions in terms of omics layer selection, pathway database availability, organism selection and the mapping of omics feature identifiers. multiGSEA is publicly available under the GPL-3 license at https://github.com/yigbt/multiGSEA and at bioconductor: https://bioconductor.org/packages/multiGSEA .


Assuntos
Biologia Computacional/métodos , Metaboloma , Proteoma , Software , Transcriptoma , Algoritmos , Animais , Bases de Dados Factuais , Humanos
7.
Arch Toxicol ; 94(2): 371-388, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32034435

RESUMO

Exposure of cells or organisms to chemicals can trigger a series of effects at the regulatory pathway level, which involve changes of levels, interactions, and feedback loops of biomolecules of different types. A single-omics technique, e.g., transcriptomics, will detect biomolecules of one type and thus can only capture changes in a small subset of the biological cascade. Therefore, although applying single-omics analyses can lead to the identification of biomarkers for certain exposures, they cannot provide a systemic understanding of toxicity pathways or adverse outcome pathways. Integration of multiple omics data sets promises a substantial improvement in detecting this pathway response to a toxicant, by an increase of information as such and especially by a systemic understanding. Here, we report the findings of a thorough evaluation of the prospects and challenges of multi-omics data integration in toxicological research. We review the availability of such data, discuss options for experimental design, evaluate methods for integration and analysis of multi-omics data, discuss best practices, and identify knowledge gaps. Re-analyzing published data, we demonstrate that multi-omics data integration can considerably improve the confidence in detecting a pathway response. Finally, we argue that more data need to be generated from studies with a multi-omics-focused design, to define which omics layers contribute most to the identification of a pathway response to a toxicant.


Assuntos
Genômica/métodos , Metabolômica/métodos , Proteômica/métodos , Toxicologia/métodos , Animais , Biologia Computacional/métodos , Humanos , Processamento de Proteína Pós-Traducional , Análise de Célula Única , Distribuição Tecidual
8.
RNA ; 24(3): 342-360, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29196413

RESUMO

Small nucleolar RNAs (snoRNAs) are essential players in the rRNA biogenesis due to their involvement in the nucleolytic processing of the precursor and the subsequent guidance of nucleoside modifications. Within the kingdom Fungi, merely a few species-specific surveys have explored their snoRNA repertoire. However, the wide range of the snoRNA landscape spanning all major fungal lineages has not been mapped so far, mainly because of missing tools for automatized snoRNA detection and functional analysis. For the first time, we report here a comprehensive inventory of fungal snoRNAs together with a functional analysis and an in-depth investigation of their evolutionary history including innovations, deletions, and target switches. This large-scale analysis, incorporating more than 120 snoRNA families with more than 7700 individual snoRNA sequences, catalogs and clarifies the landscape of fungal snoRNA families, assigns functions to previously orphan snoRNAs, and increases the number of sequences by 450%. We also show that the snoRNAome is subject to ongoing rearrangements and adaptations, e.g., through lineage-specific targets and redundant guiding functions.


Assuntos
Fungos/genética , Genoma Fúngico/genética , Genômica , RNA Nucleolar Pequeno/genética , Evolução Molecular , Fungos/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Nucleolar Pequeno/metabolismo
9.
Noncoding RNA ; 3(1)2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29657275

RESUMO

The U3 small nucleolar RNA (snoRNA) is an essential player in the initial steps of ribosomal RNA biogenesis which is ubiquitously present in Eukarya. It is exceptional among the small nucleolar RNAs in its size, the presence of multiple conserved sequence boxes, a highly conserved secondary structure core, its biogenesis as an independent gene transcribed by polymerase III, and its involvement in pre-rRNA cleavage rather than chemical modification. Fungal U3 snoRNAs share many features with their sisters from other eukaryotic kingdoms but differ from them in particular in their 5' regions, which in fungi has a distinctive consensus structure and often harbours introns. Here we report on a comprehensive homology search and detailed analysis of the evolution of sequence and secondary structure features covering the entire kingdom Fungi.

10.
BMC Genomics ; 17(1): 969, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27881081

RESUMO

BACKGROUND: Small nucleolar RNAs (snoRNAs) are one of the most ancient families amongst non-protein-coding RNAs. They are ubiquitous in Archaea and Eukarya but absent in bacteria. Their main function is to target chemical modifications of ribosomal RNAs. They fall into two classes, box C/D snoRNAs and box H/ACA snoRNAs, which are clearly distinguished by conserved sequence motifs and the type of chemical modification that they govern. Similarly to microRNAs, snoRNAs appear in distinct families of homologs that affect homologous targets. In animals, snoRNAs and their evolution have been studied in much detail. In plants, however, their evolution has attracted comparably little attention. RESULTS: In order to chart the phylogenetic distribution of individual snoRNA families in plants, we applied a sophisticated approach for identifying homologs of known plant snoRNAs across the plant kingdom. In response to the relatively fast evolution of snoRNAs, information on conserved sequence boxes, target sequences, and secondary structure is combined to identify additional snoRNAs. We identified 296 families of snoRNAs in 24 species and traced their evolution throughout the plant kingdom. Many of the plant snoRNA families comprise paralogs. We also found that targets are well-conserved for most snoRNA families. CONCLUSIONS: The sequence conservation of snoRNAs is sufficient to establish homologies between phyla. The degree of this conservation tapers off, however, between land plants and algae. Plant snoRNAs are frequently organized in highly conserved spatial clusters. As a resource for further investigations we provide carefully curated and annotated alignments for each snoRNA family under investigation.


Assuntos
Família Multigênica , Filogenia , Plantas/classificação , Plantas/genética , RNA de Plantas/genética , RNA Nucleolar Pequeno/genética , Sequência de Bases , Análise por Conglomerados , Biologia Computacional/métodos , Sequência Conservada , Bases de Dados de Ácidos Nucleicos , Evolução Molecular
11.
RNA Biol ; 13(2): 119-27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26828373

RESUMO

U6 small nuclear RNAs are part of the splicing machinery. They exhibit several unique features setting them appart from other snRNAs. Reports of introns in structured non-coding RNAs have been very rare. U6 genes, however, were found to be interrupted by an intron in several Schizosaccharomyces species and in 2 Basidiomycota. We conducted a homology search across 147 currently available fungal genome and identified the U6 genes in all but 2 of them. A detailed comparison of their sequences and predicted secondary structures showed that intron insertion events in the U6 snRNA were much more common in the fungal lineage than previously thought. Their positional distribution across the entire mature snRNA strongly suggests a large number of independent events. All the intron sequences reported here show canonical splice site and branch site motifs indicating that they require the splicesomal pathway for their removal.


Assuntos
Evolução Molecular , Íntrons/genética , RNA Nuclear Pequeno/genética , Sequência de Bases , Genoma Fúngico , Conformação de Ácido Nucleico , Splicing de RNA , RNA Nuclear Pequeno/química , Schizosaccharomyces/genética , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...